
EÆcient Calculation of a Jitter/Stability
Metric

Daniel P. Giesy �

Guidance and Control Branch, NASA Langley Research Center,
M/S 161, Hampton, VA 23681-2199

Abstract

A tool for computing a jitter/stability metric used in NASA re-
quirements statements is developed. An eÆcient algorithm is given
for computing this metric. Two ways of implementing it on a comput-
er are discussed. One is optimized for computational speed while the
other sacri�ces some speed to conserve memory. Timing studies are
given to show that the improvement of computation times using the
present algorithm over previously existing techniques can run to sev-
eral orders of magnitude, and that previous techniques were so costly
that the present algorithm represents enabling technology. Further
comparisons show that the memory conservative implementation runs
at about half the speed of the fast implementation, but can cut the
major data storage requirement of the fast implementation by 95{99%,
making the algorithm implementable on much smaller computers, such
as PC's, than it would be otherwise. Software for both implementa-
tions is included in version 2 of the NASA time and frequency domain
analysis program PLATSIM.

�Aerospace Technologist, Mathematician. The work in this paper was done while the
author was a Computer Systems Specialist with Lockheed Martin and was published in
the AIAA Journal of Spacecraft and Rockets, [1]. This work was supported by NASA
Langley Research Center under contracts NAS1-19000 and NAS1-96014.

1

List of Figures

1 A jitter window in four positions 5
2 Potentially signi�cant maxima and dominant element pointers

before update . 11
3 Potentially signi�cant maxima and dominant element pointers

after update . 12
4 Linear regression �t to window size timing data 27

Nomenclature

a; b; c; d = Constants used in the jitter calculation timing formula, sec
J(y,w) = See De�nition 1

k; k1; : : : ; km = Number of data points in a time series sampled at equal time increments
which are covered by windows w;w1; : : : ; wm

l = The number of di�erent time signals being simultaneously analyzed by
the memory conservative implementation of the algorithm

l1; : : : ; lm = Dominant minimum pointers, same units as t1, etc.
m = Number of windows for which jitter/stability is to be determined

mi = Number of windows for which jitter/stability is to be determined in
timing test case number i

n; ni = Number of data points in a time series

N = An integer parameter used by the memory conservative implementation
of the algorithm in managing dynamic memory allocation

t1; t2; : : : ; tn = Sample times for a discrete time series; arbitrary time units can be
used, for a spacecraft instrument boresight pointing error application,
typical unit would be sec

T = Total duration of discrete time signal, i.e., tn� t1, in the same units as
t1, etc.

u1; : : : ; um = Dominant maximum pointers, same units as t1, etc.
w;w1; : : : ; wm = Lengths of jitter/stablility de�ning windows, same units as t1, etc.

y = Discrete time series of n points; units are problem dependent, for a
spacecraft instrument boresight pointing error measurement, typical
unit would be arcseconds

y(i) = Same as y(ti), this notation only used if time points are equally spaced
y(ti) = Element i of time series y, same units as y

y
(w)
J = See De�nition 1

2

y
(w)
L = See De�nition 1

y(w)
U = See De�nition 1

zi = Calculation time per data point of test case i, sec
Greek

�i = Execution time of test case number i, sec
Subscripts

i = Time point number, 1 � i � n
i = Test case number, 1 � i � 3808
j = Window number, 1 � j � m

Introduction

The purpose of this paper is to provide a computational tool whose
uses include design and analysis of spacecraft. It presents an eÆcient method
for calculating a metric that has been used by NASA to quantify requirements
for pointing jitter and stability in spacecraft instrumentation [2]. This met-
ric has been used to state requirements for the Upper Atmosphere Research
Satellite (UARS), the Earth Observing Satellite (EOS), and individual in-
struments on these satellites. This jitter/stability metric has the advantage
of having a high intuitive content; it is easy for an engineer to picture the
connection between the jitter/stability value this metric assigns to any given
time signal and the level of noise or drift in the signal. Since NASA states
requirements in terms of this metric, it is important to be able to calculate
it. However, anecdotal information ([3]) indicated that when attempts were
made to calculate the jitter or stability of lengthy time signals, the compu-
tational burden was unacceptable. The computation was found to require
anything from overnight or week-end computer runs in order to complete
a single analysis to computations, such as the estimated 127 day example
presented later, which were too computationally intensive to be feasible.

Another feature of this jitter metric is that its very de�nition im-
mediately leads one to an easy algorithm for its computation. Anecdotal
information [3] indicates that this was the algorithm in use when unaccept-
able computational burdens were encountered. The problem is that this
algorithm is not the most eÆcient way to calculate this jitter metric. The
exact degree of ineÆciency depends on the signal length, the sampling fre-
quency, and another problem parameter (the window length); but problems
of engineering interest have been found for which the easy algorithm is three

3

or four orders of magnitude slower than the algorithm to be presented in this
paper. The penalty paid for the additional computational speed of the new
algorithm is a vast increase in algorithmic complexity.

Examples were this metric has been used can be found in industry
working papers ([4, 5]), in conference proceedings ([6, 7]); and an occasional
mention can even be found in the journal literature ([8]). Reference [6] says,
\Jitter . . . requirements [are] expressed as a worst-case change in pointing
. . . across each time interval of interest" In reference [5] \Pointing Jitter"
is de�ned to be \the peak-to-peak variation of the actual pointing direction
over relatively short time intervals" with \Pointing Stability" using the same
de�nition except that the time intervals are \relatively long."

In this paper, the \time intervals" used as a parameter in the de�ni-
tion of the jitter/stability metric will be called windows. Then the jitter or
stability value of a given time signal with respect to one of these windows
is found by placing the window over the time signal in such a position as to
maximize the peak-to-peak variation of that portion of the signal which is
under the window. It is this maximum peak-to-peak variation which is taken
as the value of the metric. Since the same algorithm is used to calculate
either the jitter metric or the stability metric, the word \jitter" will be used
for the remainder of this paper to refer to either jitter or stability as de�ned
above.

The technique presented in this paper can be applied to an arbitrary
discrete function of �nitely many time points. The units will be determined
by the speci�c use which is being made of it. For quantifying the jitter in
the boresight pointing error of an observational instrument on a spacecraft,
typical units for time might be seconds while units for the boresight error
might be arcseconds. On the other hand, if one is looking at irregularities in
tectonic plate drift, the units might well be centuries and centimeters. So,
for the most part in this paper, the units will be left unstated.

Fig. 1 shows one such window in four of its possible positions on a
discretely sampled function of time. The length (duration) of each time
window, represented by the width of the rectangle, is the same for all four
window positions. The top and bottom of each rectangle is positioned to show
the peak-to-peak variations of the function within the window. The tallest
rectangle represents one window position where the peak-to-peak variation
reaches its worst case value, so its height represents the jitter in this time
function for this window size. Note that the leftmost window extends into the
negative part of the time axis where there are no data points from the discrete

4

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

time

y

Figure 1: A jitter window in four positions

time signal. Including such windows does not change the value calculated
for the jitter metric, and will be useful in implementing the algorithm.

In order to calculate this jitter metric with respect to a given window,
a position must be found for this window which maximizes the peak-to-peak
variation of the time signal under the window. The easy algorithm to ac-
complish this calculation is to simply try all window positions and pick the
worst case from among them. If the signal is discrete and of �nite length
(discrete signals of �nite length can arise if the data come from sampling the
output of some sensor or if the data are generated by a numerical simulation),
then there are only a �nite number of window positions with the property
that any two of them cover di�erent sets of points; so this is an algorithm
which can be implemented on a computer. This search can be performed in
a systematic fashion by �rst placing the window at the beginning of the time
signal and calculating the peak-to-peak variation under it, then moving the
window forward in time until it covers one additional point of the time signal
and repeating the peak-to-peak variation determination, and continuing to
advance the window one point at a time and determine the new peak-to-peak
variation until the end of the signal is reached. The measure of jitter is then

5

the worst of these peak-to-peak variations. This is easily programmed in
FORTRAN using a nested pair of DO loops or in MATLAB (MATLAB is a
registered trademark of The MathWorks, Inc.) using a vectorized determi-
nation of the peak-to-peak variation under the window in a given position
inside a single for loop.

If the data points in a discrete signal are equally spaced, the compu-
tational complexity of the jitter calculation for each window is determined
by two parameters: n, the number of points in the data sequence; and k, the
number of points of data that lie under the chosen window. These numbers
can be quite large. For example, the data may come from a simulation driven
by disturbances with high-frequency components, so that accuracy requires
an integration interval which is small compared to the window size, resulting
in a large value for k. A small integration interval will also drive up the value
of n, as will a need to consider long term e�ects.

If the calculation of jitter is programmed on a computer using the
easy algorithm, the time to calculate the peak-to-peak variation of the signal
under the window in one position is O(k), and n�k+1 window positions must
be considered, so the total calculation time is O(k(n� k + 1)). If n is large
and 1� k � n (in one jitter analysis of the EOS AM-1 spacecraft [7], values
of n and k on the order of 105 and 104, respectively, were common), this takes
a substantial amount of time. In an analytic jitter study, the computational
expense can be driven up by such factors as: (a) Each output signal may
need to be analyzed over several di�erent windows (4{7 in the EOS AM-1
study); (b) For each disturbance scenario, many output signals need undergo
the Step (a) analysis (20{30 in the EOS AM-1 study; representative times
for a jitter calculation at this level using both the easy algorithm and the
one given in this paper are given in Table 1); (c) Step (b) must be repeated
for many disturbance scenarios (over 20 in the EOS AM-1 study); (d) Step
(c) must be repeated for each design iteration. At this point, the need for
a more eÆcient jitter calculation should be apparent. At the same time,
approximation techniques should be avoided if possible.

The purpose of this paper is to present a much more eÆcient algorithm
which exactly calculates the NASA jitter metric. This algorithm can be used
to simultaneously calculate jitter in a time series for each of several windows.
A list is maintained of potentially signi�cant maxima and another of minima
as the time series is scanned. At each time step, information from these lists
is used to update variables which accumulates the metric of jitter for each
window, leading, at the end of the scan, to a determination of jitter values

6

for all windows. If there are m windows, the time to do this is (am + b)n
where the constants a and b are independent of the actual window sizes. The
calculation time for the �rst window is (a+b)n. Comparing this to the timing
estimate O(k(n�k+1)) for the easy algorithm, it is seen that the removal of
the dependency on the window length k has replaced a timing formula which
is jointly quadratic in n and k by one which is linear in n and independent of
k. The incremental calculation time for each additional window is an. This
incremental time for each additional window has been empirically observed
to be about 30% of the time for the �rst window, so the computational time
to calculate jitter for several windows simultaneously is substantially better
than doing the calculation for each window individually.

This algorithm has been implemented in software and included in
version 2 of the PLATSIM software package ([9]). PLATSIM is a MATLAB
based software package, developed at NASA Langley Research Center, which
performs time and frequency domain analysis of the response of a controlled
or uncontrolled
exible structure to disturbances. Version 1.0 of PLATSIM
([10], [11]) contains an earlier version of this algorithm (without the memory
conservative option).

First, the algorithm is given. Then, notes on two implementations of
the algorithm are presented. The �rst implementation emphasizes computa-
tional speed while the second implementation sacri�ces some computational
speed in order to conserve computer memory. Results of timing studies to
quantify the improvements in computational time and to show the depen-
dency of timing on problem parameters are shown. A few remarks on the
amount of memory saved using the memory conservative implementation of
the algorithm are made. The paper ends with a section of conclusions.

The jitter calculation algorithm

In this section the problem is dealt with of calculating the jitter in a
time series over one or more jitter windows. Although the windows under
which the maximum peak-to-peak excursions of the time series are being
observed are thought of as sliding continuously down the time axis; for pur-
poses of determining jitter, a window need only be considered when it is
positioned so that its right end is coincident with one of the points of the
time series. (A window in this position is referred to as being in standard

position; the windows shown in Fig. 1 are placed in standard position.) This
can be seen by observing that if a window in standard position starts sliding

7

to the right, the maximum peak-to-peak excursion under that window can-
not increase until a new point of the time series comes into the window. This
happens exactly when the window reaches the next standard position. So, no
jitter information is lost by ignoring the window in any of the intermediate
positions.

Notation Let n be the number of points in the time series and denote

the time series by fy(ti)j1 � i � ng. Assume that t1 < t2 < � � � < tn.
Suppose that there are m windows and they have lengths w1 < � � � < wm.

If the time points are equally spaced, the time series might be written as

fy(1); y(2); : : : ; y(n)g and kj used to denote the number of points covered by

a window of length wj in standard position.

In Fig. 1, a time series is shown with n = 51, t1 = 0, and tn = 3. One
window is shown (in four di�erent positions), so m = 1. For this window,
w1 = :48, and so k1 = 9.

De�nition 1 For a window of length w, denote the running tallies of the

upper and lower bounds of y under each window position by y(w)
U and y(w)

L

and de�ne them by

y
(w)
U (ti) = maxfy(tj)jti � w � tj � tig (1)

y
(w)
L (ti) = minfy(tj)jti � w � tj � tig (2)

where

1 � i � n: (3)

Denote the jitter time history of y for this window by y
(w)
J and de�ne

it by

y
(w)
J (ti) = y

(w)
U (ti)� y

(w)
L (ti); 1 � i � n (4)

Finally, denote the jitter by J(y; w), and de�ne it by

J(y; w) = maxfy
(w)
J (ti)j1 � i � ng (5)

Where the window length is clear from context, the superscript (w)
will be omitted.

8

In Fig. 1, the windows shown correspond to i = 7, 27, 39, and 51.
The numbers yU(ti), yL(ti), and yJ(ti) represent, respectively, the top y-
coordinate, the bottom y-coordinate, and the height of the corresponding
rectangle. Note that even though k = 9, the leftmost pictured window covers
only 7 points; its left side extends into negative time where the time series is
not de�ned.

One easily sees that, in Eq. (5), the same value will be computed for
J(y; w) if the lower limit of 1 is changed to a larger number, so long as t1
lies under the �rst window used. If jitter were to be calculated using the
easy algorithm, this lower limit would be k, the number of points covered
by a window of length w positioned at the beginning of the time series.
Doing the calculation by using the easy algorithm refers to actually doing
the calculations in equations Eqs. (1), (2), (4), and (5). Referring to Fig. 1, if
one wished to calculate jitter using the easy algorithm, it would be ineÆcient
to use the �rst window position shown there. It would be more eÆcient to
start with a window positioned with its left edge at time 0. If the time steps
are evenly spaced so that there are k points under a window in standard
position, then doing the calculations in equations Eqs. (1) and (2) requires k
references into the y vector for each entry in yU and yL. Since the �rst k� 1
entries of yJ are dominated by yJ(k), these need not be computed, and only
the last n� k + 1 values of yU and yL are needed.

The comparative speed of the algorithm to be presented in this paper
can now be explained. When jitter is calculated using the easy algorithm,
then for typical values of n and k, most entries in y are being referenced k
times. The algorithm presented here reduces the number of references per
time series entry from k references (for most time series elements) to a small
number of references which is bounded independent of k. Some overhead is
incurred on each pass through a time series. This is amortized over all the
windows being considered in the pass, so the bound on the number of times
a given series element is referenced per window improves as more windows
are considered simultaneously.

If one only wishes to calculate J(y; w), it is not necessary to spend
computer memory to contain the full arrays yU , yL, and yJ . For each i,
one could calculate the i-th element of each of these arrays, accumulate the
necessary information from this calculation in the jitter-to-date tally, and
discard these i-th elements.

The following discussion details the calculation of yU(ti). The calcu-
lation of yL is parallel. One need only reverse the direction of inequalities in-

9

volving elements of y and replace \decreasing" by \increasing" in statements
about the monotonicity of potentially signi�cant extrema lists of elements of
y.

The outer loop of the easy algorithm can be thought of as making
a pass through the time signal. Each step of this pass places the scanning
window in a new position. The inner loop then scans every element of the
time signal under the window to determine the maximum and minimum
so the peak-to-peak variation can be computed. If this calculation needs
to be done for more than one window, the calculation for each window is
traditionally done independently of that for the others.

The present algorithm also makes a pass through the y vector. Howev-
er, instead of scanning the length of a window back from the current position
to determine the maximum and minimum under that window, the informa-
tion needed to �nd that maximum and minimum has already been recorded in
some bookkeeping arrays in a manner which allows for eÆcient retrieval and
update. Another advantage to this technique is that the jitter calculation can
be done for several windows simultaneously at less computational cost per
window than performing the calculation for each window individually. Two
lists are being maintained, one a list of potentially signi�cant maxima and
the other a list of potentially signi�cant minima. The potentially signi�cant
maxima (respectively, minima) list contains elements of the y vector which
have already been scanned and which have the potential of being the maxi-
mum (respectively, minimum) element in one of the windows in the present
and/or some future position of the pass. Each window has three bookkeeping
items associated with it, a jitter-to-date tally, a dominant maximum pointer,
and a dominant minimum pointer. The jitter-to-date tally records how much
jitter there is in the time series up to the point most recently scanned. The
dominant maximum pointer points at the location in the list of potentially
signi�cant maxima which gives the maximum value of the time series under
the window when its right end is at the current element of the pass. There
is an analogous relationship between the dominant minimum pointer and
the list of potentially signi�cant minima. All of these bookkeeping elements
must be updated with each step through the y vector. The eÆciency of the
algorithm comes in that this update can be accomplished in an average time
bounded by an expression of the form am+b where a and b are absolute con-
stants which are, in particular, independent of the lengths of the individual
windows.

The process of making one step through the y vector can be thought of

10

as occurring in the following sequence: Initially, all windows have their right
endpoints at the last element of the y vector which has been scanned; for each
window, the jitter in y up to the last scanned point has been entered into a
jitter-to-date tally; all the information in the potentially signi�cant extrema
lists is relevant to windows in this position and future positions; and the
dominant element pointers are correct for this window position. Then, the
next point of the y vector is scanned and the windows all slide from their
old position to their new position with their right endpoints all coincident
with the time at which the new y point occurs. Then, the new signi�cant
local extrema lists are formed from the old. Then, the dominant element
pointers are updated to be correct for the new window position. Finally, the
jitter-to-date tally for each window is updated with new information from
this step.

0 5 10 15

2

4

6

8

10

12

i

y

L4 L3 L2 L1 R

Figure 2: Potentially signi�cant maxima and dominant element pointers be-
fore update

The process of advancing the calculation of yU by one time step can be
observed from Figs. 2 and 3. In both �gures, the same generic time sequence
y is shown. It is sampled at 17 equally spaced points, so n = 17. There are

11

0 5 10 15

2

4

6

8

10

12

i

y

L4 L3 L2 L1 R

Figure 3: Potentially signi�cant maxima and dominant element pointers after
update

12

four windows with respect to which jitter is being calculated (m=4). The
window lengths are given by the point counts k1 = 3, k2 = 7, k3 = 11, and
k4 = 15. Fig. 2 shows the situation in computing yU after the scan of y has
reached y(15) while Fig. 3 shows the situation after reaching y(16). The four
windows overlap, having a common right edge at the dashed line labeled R.
The left edge of w1 is at the dashed line labeled L1, the left edge of w2 is at
L2, and so on. Potentially signi�cant maxima are shown as stars, other data
points as x's. Dominant element pointers are shown for each window. Thus,
y
(w1)
U (15) = y(14), y

(w2)
U (15) = y(9), etc.

At the point of the calculation shown in Fig. 2, the algorithm has only
seen y(1), . . . , y(15) and it is computationally eÆcient for the algorithm to
assume that the series goes on inde�nitely. One possibility the algorithm
must consider is that the series is monotone decreasing for at least another
14 points. If that is the case, every one of the potentially signi�cant maxima is
either the maximum element in one of these windows in the present position
(these are marked by the dominant element pointers) or will become the
maximum element under one or more windows at some future position (or
both). The possibility that it might become a maximum in some future
window is the potential signi�cance of each of these elements in computing the
maxima of the series y over some jitter windows. Note that the subsequence
of y formed by the potentially signi�cant maxima is monotonically decreasing
and that each dominant element pointer points to the left-most potentially
signi�cant element under its window. This always happens, and can be
established by induction on i.

Now observe what happens when the scan of y advances to i = 16 in
Fig. 3. The newly scanned element always becomes potentially signi�cant.
In this example, it is bigger than several of the potentially signi�cant max-
ima at the previous stage (located at i = 15; 14; 12; and 11), so they lose
their potential signi�cance. Note that the demoted elements were placed
consecutively at the right end of the old list of potentially signi�cant max-
ima. This always happens; and because of this, the demotion of previously
potentially signi�cant extrema is an eÆcient computation. The dominant
element pointers are updated. For window 1, the previous dominant element
lost signi�cance, so the pointer was redirected to the newly scanned element
y(16). For windows 2 and 4, the previous dominant element dropped out of
the left end of the window as it moved on, so the pointer was moved to the
right in the list of potentially signi�cant maxima until an element was found
in the window. Since points are equally spaced, the pointer needed only to

13

move to the next element in the list of potentially signi�cant maxima. For
unequally spaced points, several steps might have been necessary. The third
window could leave its dominant element pointer where it was the previous
step. Note that at this point, the same element, y(7), is the maximum under
both the third and fourth windows.

The reader should note that in one more step (i = 17), the only po-
tentially signi�cant maximum will be the new point y(17), and all dominant
element pointers will point to it.

The eÆciency of the algorithm comes from the way in which the lists
of potentially signi�cant extrema and the dominant element pointers are
updated from step to step. As another step is taken, the new element from
the y vector is potentially signi�cant as both a maximum and minimum.
Whether either of these potentials is realized will depend on future behavior
of the y vector. So the new element will be added to the end of both lists.
What is important is that the presence of this new element on a list may
remove any potential signi�cance which some of the previous elements had,
so they are deleted from the list.

Speci�cally, when a new element is added to the list of potentially
signi�cant maxima, then any element already on the list which is less than
or equal to the added element is no longer potentially signi�cant. This loss of
potential signi�cance is seen by observing that a window in its new position
or in any future position which covers the earlier, dominated, element also
covers the element just added, so the earlier element is not needed to calculate
the peak-to-peak excursion in any such window. Thus, the list of potentially
signi�cant maxima will be updated by removing all elements less than or
equal to the new element and then adding the new element at the end of
the resulting list. Consequences of updating the list in this way are that the
elements in this list form a monotonically decreasing sequence, and that the
set of elements deleted from the list as the result of the new addition are
located consecutively at the end of the pre-update list. These consequences
may be demonstrated by induction on the position of the scan in the y vector
(at the initial step, the list contains a single element and so is vacuously
monotonic decreasing). The list of potentially signi�cant minima is updated
similarly.

Since the list of potentially signi�cant maxima is a decreasing se-
quence, the dominant maximum pointer for each window points as far to
the left in the list as it can be and still have the element it points to lie in
the window in its present position. This characteristic of the position of the

14

dominant maxima simpli�es the process of updating their pointers after each
step.

The dominant element pointers are updated next. For each pointer,
there are three possibilities. The �rst possibility is that the element being
pointed to by a given window's pointer may have been removed because it is
dominated by the new element. Then the pointer is redirected to this new
element. The second possibility is that the element being pointed to by a
given window's pointer may no longer be in that window after the window
has moved to its new position. This possibility happens when, before the
update, the dominant element was at the left end of the window. In this
case, the potentially signi�cant element list is scanned starting at the old
pointer position and moving to the right until an element is found which is
in the window in its new position. If the time points are equally spaced, it
is only necessary to move one element down the list. Third, if neither of the
two previous circumstances hold, the pointer is left where it was.

For a given window, the maximum and minimum of y over the window
in its new position are determined by the elements in the potentially signif-
icant extrema lists pointed to by the window's dominant element pointers.
From these values, the peak-to-peak excursion of y over the window in this
position can be determined. This is compared to the jitter-to-date tally for
this window, and if the new peak-to-peak excursion is greater, the tally is
updated with this value.

Once the step involving the last point of y has been completed, the
desired jitter values are found in the jitter-to-date tallies. This informal
algorithmic description is formalized in algorithmic language as follows:

Algorithm 1 Step 0. Initialization. Initialize the potentially signi�cant

maxima and minima lists to fy(t1)g. For j = 1; 2; � � � ; m, set y
(wj)
U (t1) =

y
(wj)
L (t1) = y(t1), and set y

(wj)
J (t1) = J(y; wj) = 0. Set the iteration

counter, i, to 1 and set all the dominant maximum pointers u1; � � � ; um
and all the dominant minimum pointers l1; � � � ; lm to t1.

Step 1. Increment i by 1. If i > n, terminate; the desired jitter values are

in J(y; w1), . . . ,J(y; wm). Otherwise, continue.

Step 2. Start scanning the potentially signi�cant maxima list from right to

left. Each time a scanned element is less than or equal to y(ti), re-
move it. Stop the scan the �rst time an element is encountered which

15

is greater than y(ti) or when the list becomes empty. Perform the same

operation on the potentially signi�cant minima list reversing the in-

equalities.

Step 3. Add y(ti) to the right end of both potentially signi�cant extrema

lists.

Step 4. For j = 1; 2; � � � ; m;

Step 4.1 Update the pointers to the dominant maxima and calculate

y
(wj)
U (ti):

(a) if y(uj) was removed from the potentially signi�cant maxima

list at Step 2, set uj = ti; otherwise,

(b) if uj < ti � wj, then scan the potentially signi�cant maxima

list starting at y(uj) and moving to the right until the �rst

element y(ts) is found for which ts � ti�wj, and set uj = ts;
otherwise,

(c) uj remains the same.

Then set y
(wj)
U (ti) = y(uj).

Step 4.2 Similarly, update the pointers to the dominant minima and

calculate y
(wj)
L (ti).

Step 5. For j = 1; 2; � � � ; m, set y
(wj)
J (ti) = y

(wj)
U (ti)�y

(wj)
L (ti) and if y

(wj)
J (ti) >

J(y; wj), then set J(y; wj) = y
(wj)
J (ti).

Step 6. Return to step 1.

Note: If time points are equally spaced, then the bookkeeping in this
algorithm can be reduced by using the subscript, i, instead of the time value,
ti, for the dominant element pointers and using the number of points, kj,
under a window instead of its length in seconds, wj, in the Step 4.1(b) and
4.2(b) tests.

Starting the algorithm at i = 1 would be wasteful if jitter were being
calculated using the easy algorithm. However, in this algorithm, it serves
the very useful purpose of properly initializing the potentially signi�cant
extrema lists and dominant element pointers, and it simpli�es the additional
bookkeeping necessary for tracking multiple windows simultaneously.

16

Remarks on cost: For the most part, these remarks address the
case of equal time increments. The time required to calculate jitter using
the easy algorithm for a single window covering k points would appear to
be proportional to number of times an element of the y array is referenced.
Thus, the time to calculate jitter using the easy algorithm is proportional
to k(n � k + 1). If the time series y has duration T (e.g., if y(1) occurs at
time 0 and y(n) occurs at time T) and the window has length (duration)
w, then k is the smallest integer such that k � (n � 1)w=T . So, for �xed
values of T and w, the time to calculate jitter using the easy algorithm is a
quadratic function of the number of points, n, used in discretizing the time
interval. The coeÆcients of this quadratic function depend on the length,
w, of the window. The total time needed to calculate jitter with respect to
several windows is found by adding up the times to calculate jitter for each
individual window.

On the other hand, an examination of Algorithm 1 shows that the time
to calculate jitter using this algorithm may be bounded by an expression of
the form amn+ bn+ cm+d where a, b, c, and d are absolute constants. The
cm+ d part of this comes from Step 0 of the algorithm and, in any realistic
example, is an inconsequential part of the total time. The total time for Step
1 is proportional to n. The time in Step 2 is spent either in removing elements
from lists of potentially signi�cant extrema or in examining an element of
one of the lists and discovering that it stops further removal. Since a given
element of y can be removed from a list only once during the entire course
of the jitter calculation, the \remove" part takes time proportional to n.
Since it only takes one element per step to stop a removal back scan, this
part of Step 2 also takes time proportional to n as does Step 3. Step 4 is
executed n � 1 times, so Step 4.1 executed is m(n � 1) times. Most of the
parts of Step 4.1 require an execution time which can be bounded by a �xed
amount. The only exception is the part of substep (b) referring to a scan
of elements in a potentially signi�cant extrema list, and that only when the
y points are unequally separated in time. But here, considering the entire
jitter calculation, a given element of y can only be scanned once per window
per list. Thus, the total time spent on Step 4.1 is O(mn). Exactly the same
considerations apply to Step 4.2. Similarly, the time for Step 5 is O(mn) and
for Step 6 is O(n).

Comparing the two times, it is seen that the the easy algorithm timing
expression is a sum of m quadratics in n, so can be thought of as being
O(mn2), while the timing expression for the present algorithm is O(mn). For

17

large n, the savings potential is great. The extent to which that potential is
realized will be detailed in a subsequent section.

Implementation notes

Two implementation scenarios are considered. In the �rst, it is as-
sumed that the complete time series y is available to the jitter algorithm at
each step in the scan. Thus, the jitter analysis code can keep track of any
past information it needs from y by an indirect addressing scheme into the
y vector itself. This �rst scenario produces the faster jitter analysis code. In
the second, it is assumed that the points of y are fed to the jitter analysis code
one at a time and that the jitter analysis code has complete responsibility for
any necessary recall. The emphasis in this latter case will be on managing
computer memory to keep memory usage within reasonable bounds.

While programming for speed of execution hardly needs justi�cation,
in this era of multi-megabyte computer memories the need for care in memory
usage may. Consider, then, a time simulation involving a 1 kilohertz sample
rate extending over a 1000 second duration. Suppose that 50 di�erent out-
puts must be analyzed for jitter. These numbers are within the bounds of
parameters that have arisen in actual applications of this technology. Then,
each output time history contains 1,000,001 double precision numbers, which
will be assumed to occupy the IEEE standard of 8 bytes of computer storage.
Taking into account that all 50 output time histories must be generated and
stored at one time (running multiple simulations to generate the output time
histories in smaller groups has its own penalty in terms of execution time)
it is then seen that just storing these 50 y's requires over 381 megabytes of
computer memory (recall that computer manufacturers use \megabyte" to
refer to 220 bytes, not 106). While it might be possible to equip a high-end
workstation to accommodate this in physical memory, a much more common
result of trying to run a problem this size would be that a lot of virtual
memory paging would be necessary. This would cause a severe increase in
wall-clock time of execution.

The Fast Implementation
In this scheme, multiple outputs are analyzed one at a time so that

the arrays used in potentially signi�cant extrema processing can be reused
for each output. It will be seen that this prevents what would otherwise
be a doubling of storage needed (assuming that an integer requires half the
storage of a double precision number) to hold just the output time histories.

18

The potentially signi�cant extrema lists are realized by arrays of inte-
gers which point to the appropriate elements of the y vector (i.e., an indirect
addressing scheme). These arrays must be the same length as the y vector.
If y is strictly decreasing in time, then in Step 2 of Algorithm 1, no elements
of y are ever removed from the potentially signi�cant maxima list, so it must
be big enough to hold them all. An increasing y imposes the same restriction
on the list of potentially signi�cant minima. For each list, there is an integer
variable containing a pointer to the current active right end of the list, and
an array of m integers which contain pointers to the place in the list point-
ing to the dominant elements for each window (in e�ect, a doubly indirect
addressing scheme into the y vector). One of the eÆciencies of the algorithm
comes from the fact that once an entry is made into one of these potential-
ly signi�cant extrema pointer lists, it is never moved (although it may be
overwritten). \Step 2" removal of dominated elements is accomplished by
rede�ning the \right end" pointer to point farther to the left. \Step 3" is
accomplished by incrementing the \right end" pointer by 1 and storing the
current value of i in the new right end of the list. The \Step 4.1(a)" decision
can be made by comparing the dominant element pointer to the new \right
end" pointer and the \Step 4.1(b)" decision can be made by comparing the
value pointed to by the dominant element pointer, the current value of i,
and the number of points in the relevant window. Similar remarks apply to
Step 4.2. The information needed to complete \Step 4" and do \Step 5"
comes from following the dominant element pointers into the lists of point-
ers to potentially signi�cant extrema and following those pointers into the y
vector.

This scheme has been implemented in FORTRAN 77 code subrou-
tines. Further code provides an interface to MATLAB. All this code is com-
piled into a MATLAB MEX-�le, which is a �le of compiled binaries which can
be called directly from MATLAB. In this form, it is part of the PLATSIM,
Version 2.0, software package [9].

The Memory Conservative Implementation
In order to keep memory usage to a relatively minimal level, dynamic

memory management such as is available in the C programming language is
employed. The scheme must be capable of calculating the jitter in several
time series (e.g., multiple output channels) simultaneously.

For each time series, the potentially signi�cant maxima list and the
potentially signi�cant minima list will be maintained using a doubly linked

19

linear list of storage structures. By a \storage structure" is meant a data
storage construct (such as the C programming language data type struct)
which can hold several items or \�elds" of data, possibly of dissimilar types.
What makes a collection of these structures a \doubly linked linear list" is
the logical organization of this set of structures into a linear ordering with
one being thought of as the �rst (pictured as the leftmost) possibly followed
by a second, a third, and so forth until a last (the rightmost) is reached.
The programming mechanism for this logical ordering is the inclusion of two
�elds in each structure, one of which contains a pointer to the structure
immediately to its left (or a special marker if the structure is at the left
end of the list) and the other of which contains a pointer to the structure
immediately to its right (or a special marker if the structure is at the right
end of the list). Each storage structure must be able to store the dependent
value y(ti) of an element of the time series and also the time ti or, in the case
of equally spaced points, the time index i at which the time series takes on
this value.

A �rst-in, �rst-out list of these structures will be maintained as a
reserve stack to provide new structures as needed and on which to place
unneeded structures as the information in them becomes obsolete.

For each potentially signi�cant extrema list, one pointer will keep
track of its right end and, for each window, an additional pointer will keep
track of the leftmost structure in each list which contains information from
under this window (these correspond, respectively, to the \right end" pointer
and the \dominant element" pointers of the Fast Implementation). As each
new step in the jitter calculation is taken, each list will be updated using
a new data point from one of the time series. Any structures containing
information obsoleted by the new value will be moved to the input end of
the reserve stack. Structures will be moved from the output end of the
reserve stack to the right end of each potentially signi�cant extrema list to
hold the new value. The \right end" pointers will be updated to point to the
structures just added, and the \dominant element" pointers will be updated
as necessary.

It is important to realize that when a structure is spoken of here as
having been \moved" from one list to another, this does not mean that there
has actually been a movement of data from one part of physical computer
memory to another. What is altered are the values of various pointers which
de�ne the position of the structure in one or another of the logical lists.

If there are l time signals being jitter analyzed, then 2l structures

20

must be moved from the reserve stack at each jitter calculation step. Before
that step is taken, a check will be made of the number of structures in the
reserve stack. If it is fewer than 2l + 1, an attempt will be made to salvage
structures containing unneeded information from the potentially signi�cant
extrema lists. If this does not bring the reserve stack up to at least 2l + 1
structures, an additional N structures are added to the reserve stack using
dynamic memory allocation. The parameter N is 2l or larger so that the
stack will contain at least 2l + 1 structures. The memory optimal practice
would seem to be to add just enough structures to bring the total to 2l + 1.
It is hoped that using the proposed scheme with a larger value of N will
reduce overhead by reducing the number of dynamic storage allocation calls
necessary. It is only suboptimal from memory usage by at most N � 1
structures over the entire run of the jitter calculation. Reducing the number
of dynamic storage allocation calls probably has its own storage usage reward
as well as reducing execution time. The system must use additional memory
to keep track of memory allocated at each call. This additional information
would be needed when the system frees up the allocated memory.

This stack management scheme has two important e�ects: (a) The
reserve stack can never become empty. This simpli�es the stack maintenance
functions. (b) Structures removed from the lists and put back on the reserve
stack as a result of Algorithm 1, Step 2, are not reused during the current
jitter calculation step update process. This means that structures pointed
to by \dominant element" pointers retain their \y" information and can be
queried even if they have been removed from their list and placed on the
stack. The program uses this \y" information to determine whether such
an structure has, in fact, been removed from the list so that the \dominant
element" pointer can be properly updated.

The scheme to salvage unneeded structures from the potentially sig-
ni�cant extrema lists is based on the following ideas. If a structure on a
potentially signi�cant extrema list contains information which comes from a
point in its time series which has been bypassed by the dominant element
pointer of the longest window, then it can be returned to the reserve stack.
Such a point can be seen at i = 1 in Fig. 3. As the time series approaches
its end, a structure which would need to be kept on a potentially signi�cant
extrema list if the time series were to continue inde�nitely need not be kept
if the information in it is dominated by that in an earlier structure which
will never fall o� the left end of its window before the end of the time series
is reached. Again in Fig. 3, the potentially signi�cant maxima at i = 7 and

21

8 fall into this category. Whenever additional structures are needed on the
reserve stack, any of these structures which can be salvaged will be; and the
need for allocating additional storage will be reassessed.

This scheme has been realized in a C code package which integrates
jitter analysis with the simulation code which generates the time series and
some plot data compression code. Further code provides an interface to
MATLAB. All of this code is compiled into a MATLAB MEX-�le. In this
form, it is part of the PLATSIM, Version 2.0, software package.

Timing results

Two timing studies are presented. In the �rst, the time to calculate
jitter using the two implementations of Algorithm 1 are compared to each
other and to the time to calculate jitter using the easy algorithm. These
comparisons are made by calculating jitter in time signals of di�erent lengths.
In the second study, experimental veri�cation is sought for the timing formula
for Algorithm 1 given in the \Remarks on cost".

Comparison of algorithms and implementations
The timing studies of the 2 implementations of the jitter calculation

algorithm used data from the EOS AM-1 spacecraft [11] as packaged with
the PLATSIM software [10]. In this study, there are 7 jitter windows (m = 7)
of lengths 1, 1.8, 9, 55, 420, 480, and 1000 seconds.

Two disturbances were used. The disturbance producing the smaller
jitter analysis problem is called \MODIS scan mirror". The time history of
this disturbance extends over 1000 seconds at a sample rate of 200 hertz,
so n = 200; 001. The same sample rate is used to produce the 27 outputs
to be jitter analyzed. This means that when the 7 jitter windows are in
standard position, they cover 201, 361, 1801, 11,001, 84,001, 96,001, and
200,001 points respectively.

The disturbance producing the larger jitter analysis problem is called
\MOPITT mirror scan". The time history of this disturbance extends over
1200 seconds at a sample rate of 1000 hertz, so n = 1; 200; 001. The same
sample rate is used to produce the 27 outputs to be jitter analyzed. This
means that when the 7 jitter windows are in standard position, they cover
1001, 1801, 9001, 55,001, 420,001, 480,001, and 1,000,001 points, respectively.

In order to compare execution times of alternative jitter calculations,
Algorithm 1 was exercised in both the \Fast Implementation" and the \Mem-
ory Conservative Implementation", and jitter was also calculated using the

22

\Easy Algorithm". These calculations were made in the context of a PLAT-
SIM time domain analysis. Timing values were obtained using two timing
tools. In the case of the \Fast Implementation" and the \Easy Algorithm",
the jitter calculation could be isolated from the rest of the code at the MAT-
LAB level, and MATLAB function cputime was used. For all cases, the du-
ration of the total PLATSIM analysis was timed using the UNIX timing func-
tion located, in standard implementations of UNIX, in �le /usr/bin/time.
These total times were compared to times found by running the same data
through PLATSIM with the jitter calculation option turned o�.

The timing studies were run on a Sun SPARC 10/30 workstation.
In an attempt to see how precise the timing numbers are, four of the cases
involving the smaller jitter analysis problem were rerun 5 times each on a Sun
SPARC 10/512 workstation. It should be noted that since exactly the same
problem was run with exactly the same software 5 times, exactly the same
amount of calculation was done each time; so the cpu time for the calculation
should be the same for each run. However, these were both multi-tasking
networked computers. While cputime and /usr/bin/time both purport to
measure cpu time for the speci�c job, they do seem to be in
uenced by the
total load on the computer. Timing runs were made overnights and week-
ends to try to minimize the e�ect of other computer workload on the timing
measurements, but some multitasking noise, probably from automatically
operating system procedures, seems to have a�ected the timing results.

The cases which were run �ve times each involved both implementa-
tions of Algorithm 1, run both with jitter calculation enabled and with it
disabled. Means and standard deviations of total run times for each case
were calculated as were the mean and standard deviation of the isolated
jitter calculation time in the case of the \Fast Implementation" with jitter
enabled. From these calculations, the mean and standard deviation of the
time to do jitter related calculations by the two implementations were calcu-
lated. The results are given by stating the standard deviation as a per cent of
the jitter calculation time. There was an 11% standard deviation in the time
estimate for jitter analysis by the \Fast Implementation" found by taking
the di�erence of the average time for a complete run including jitter calcu-
lation and the average time for a complete run excluding jitter calculation.
For the \Memory Conservative Implementation", the standard deviation was
41%. Most of this large standard deviation was due to a single data point
which was well separated from the cluster formed by the other four points.
By removing the obvious outlier from the data set, the standard deviation

23

was reduced to 14%. The standard deviation in the directly measured jitter
analysis time for the \Fast Implementation" was 7%.

With such a small sample size, these numbers must be considered
to be rough approximations. However, it is probably safe to conclude from
them that timing numbers presented subsequently are approximately correct
in their most signi�cant digit.

Further softening the sharpness of timing data is their dependence
on which compiler is used in compiling the executable modules and what
optimization levels are called for. The results given in this paper are based on
FORTRAN code which was compiled using the Sun \f77" compiler, version
V1.4, with optimization
ag \-O" and C code which was compiled using
the Sun \cc" compiler, version SC1.0, with optimization
ag \-O". However,
when some of the \Memory Conservative Implementation" tests were rerun
using binaries compiled using the GNU \gcc" compiler with optimization
ag
\-O3", execution times generally improved by 15-20%.

Table 1 gives the times to calculate jitter using Algorithm 1 in both of
its implementations and also doing the calculation using the easy algorithm.
The \Easy Algorithm" test was made using FORTRAN 77 subroutines which
were compiled using the same optimization
ags and linked to MATLAB in
the same way as the \Fast Implementation" test.

Table 1: Jitter calculation execution times, seconds

MODIS scan mirror MOPITT mirror scan
Case (n = 200,001) (n = 1,200,001)
Fast Implementation,
direct measurement 4:8� 101 3:0� 102

Fast Implementation,
di�erence of full runs 1:2� 102 7:5� 102

Memory Conservative Implementation,
di�erence of full runs 2:5� 102 1:9� 103

Easy Algorithm,
direct measurement 2:5� 105 1:1� 107 a

Easy Algorithm,
di�erence of full runs 2:5� 105 1:1� 107 a

a estimated

The estimate used for the time to calculate jitter in the big problem
using the easy algorithm was arrived at by running this case with only one

24

output signal instead of the 27 used in the rest of the cases and multiplying
the resulting jitter calculation time by 27. This estimation was justi�ed
experimentally by running the small problem with 1, 2, and 3 outputs. The
average time per output varied by about 1 part in 2700 over these three tests.
Theoretical considerations support the hypothesis that time to calculate jitter
using the easy algorithm is linear in the number of outputs, since the work
to calculate jitter using the easy algorithm depends only on the signal length
and the window sizes and is independent of the signal shape. Note that the
estimated time to do the full problem exceeds 127 days. On the basis of this
estimate, Algorithm 1 is claimed to be enabling technology for large jitter
problems.

Even considering the imprecision of timing numbers noted previously,
some conclusions can be drawn. Note that n for the large case is almost
exactly 6 times as large as for the small case. Times for calculating jitter for
the large problem using Algorithm 1 are all roughly 6 times the comparable
times for the small problem, supporting the claim that, for a given number
of windows, the time to calculate jitter using Algorithm 1 is proportional to
the number of points in the time series independent of the actual window
lengths. The \Memory Conservative Implementation" seems to take about
twice as long as the \Fast Implementation". The di�erences between the
\Fast Implementation" times measured directly and as a di�erence of full
runs is at least partly explained by overhead in the PLATSIM program re-
lated to outputting the jitter results which was not included in the direct
time measurement; but for these two cases, this overhead should have been
about the same. Perhaps the discrepancy is due to the imprecision and/or
variability of timing measurements.

The improvement over prior technology is clear. For the smaller prob-
lem, the speed-up using Algorithm 1 exceeds 3 orders of magnitude, while for
the larger problem the improvement in execution time is more like 4 orders
of magnitude.

The implications of this on turn-around time for a time domain analy-
sis of the EOS AM-1 spacecraft using PLATSIM are profound. Time domain
analysis consisted of simulating the response of the 27 output signals to
the disturbance time history, calculating the jitter in these 27 signals, and
performing a data compression on these signals so that the PostScript �les
containing the plots of the output time histories could be made reasonably
small. This data compression is done to realize a savings of disk space (from
multi-megabytes per �le to a few 10's of kilobytes) and time to print the

25

hard copies (from about 30 minutes per to more like 2 minutes). The small
problem which took almost 3 days to analyze using the old technology was
done in less than an hour using the new. The fraction of compute time de-
voted to jitter analysis dropped from almost 99% to about 4% for the fast
method and about 7% for the memory conservative method (and note that
the easy algorithm for computing jitter does not have a memory conservative
counterpart). For the large problem, the run time decreased from an esti-
mated time of more than 127 days to about 5 hours with jitter analysis time
decreasing from over 99.8% of the total to about 4% for the fast method and
about 9:5% for the memory conservative method.

Parameter Dependency
Theoretical analysis suggests that the time to compute jitter using

Algorithm 1 should be of the form (am+b)n where n is the number of points
in the time series, m is the number of windows, and a and b are constants
independent of all the problem parameters, speci�cally including the actual
window lengths. (The \cm + d" part of the timing formula given in the
earlier \Remarks on cost" is in the noise level of the computer execution
timing instrument, and will be ignored in this study.)

A timing study was run to measure how the jitter calculation time
using Algorithm 1 depends on n and m, and to see if it is independent
of w1; : : : ; wm (the individual window lengths). The study involved 3808
individual cases. The time series length n ranged from 100,001 to 1,200,001
in increments of 100,000. The time history which provided the input data
was the MODIS roll output from the EOS AM-1 simulation using the same
MOPITT mirror scan disturbance used for the larger jitter analysis problem
in the previous subsection. For n < 1200001, the �rst n points were used.
The basic window set was scaled by each of the factors 0.2, 0.6, 1.0, and
1.3; any windows longer than the truncated time series were discarded; and
the jitter calculation was done with each subset of the resulting window set.
This gave values of m ranging from 1 to 7 and 26 usable window lengths
distributed in a fairly uniform exponential manner from 0.2 seconds to 1000
seconds.

These parameter dependency timing tests were made using the \Fast
Implementation" of Algorithm 1. The test data had been previously cal-
culated and saved for use in these tests. Timing studies were run directly
from MATLAB and not in the context of a PLATSIM time domain analy-
sis. Times were measured using MATLAB's cputime function. Three timing

26

runs were made on each of the 3808 test cases.
The relevant data from the i-th case are ni, the number of points in

the time series, mi, the number of windows, and �i, the time to calculate
jitter. The dependent variable was taken to be zi, de�ned to be �i=ni, and
the dependence of zi on mi was investigated. A scatter plot of the points
(mi; zi) showed that the data tended to concentrate along a straight line, but
a few outliers were observed. Further analysis showed that any case which
gave an outlier in one of the three timing runs did not produce an outlier in
either of the other two runs. It was concluded that the outliers resulted from
external in
uences on the timing instrument. This was taken as justi�cation
that the outliers could be eliminated.

Outliers were eliminated by taking zi to be the median value of the
ratios �i=ni formed with data from each of the 3 runs. A scatter plot of
(mi; zi) now concentrated along a straight line with no wild points.

0 2 4 6 8
2

3

4

5

6

7

8
x 10

−6

Number of windows

T
im

e
pe

r
da

ta
 p

oi
nt

, s
ec

on
ds

Figure 4: Linear regression �t to window size timing data

Using linear least squares regression on this data, it was found that
zi � ami + b with a = 7:56 � 10�7 sec and b = 1:74 � 10�6 sec. The

27

root mean square error in this approximation was 2:73� 10�8 sec which was
about 0.6% of the mean zi value of 4:27� 10�6 sec. This is a tight �t which
experimentally validates the theoretical timing formula. A scatter plot of
the median computational time per time series point as a function of the
number of windows is shown in Fig. 3 together with the least squares linear
regression �t line.

Estimating jitter computation time as (am + b)n, it is seen that the
time to calculate jitter with respect to one window is about (a + b)n while
each additional window adds about an to the time. This means that the time
to calculate jitter with respect to each window after the �rst is about 30% of
the time to calculate jitter with respect to the �rst window. The conclusion
to be drawn from this is that it is substantially more eÆcient to calculate
jitter over several windows simultaneously than to do the calculations for
each window individually.

Memory Conservation Results

In the small problem, n = 200; 001 and l = 27. Thus, it takes 200001�
27� 8 bytes of memory to store the time histories of the outputs in 8 byte
double precision words. The jitter computation also requires 2 integer arrays
of length n to hold the information for the lists of potentially signi�cant local
extrema. Assuming that an integer occupies 4 bytes of storage, and recalling
that a megabyte of memory refers to 220 bytes, it is seen that the major data
storage part of the memory requirement for the \Fast Implementation" of
doing the jitter calculation is almost 43 megabytes.

The storage structure used in the \Memory Conservative Implemen-
tation" must hold one double precision number (y(ti)), one integer (i), and
two pointers. In the implementation of the C programming language used
in this study (the standard C compiler cc furnished with the Sun OS 4.x),
these individual �elds occupy 8, 4, 4, and 4 bytes respectively. However,
the system uses 24 bytes for the complete structure. One can only speculate
about those 4 extra bytes. Perhaps it has something to do with aligning
structures on word boundaries.

The choice was made to allocate these structures in blocks of 10,000.
The small problem required 4 of these blocks. Thus, the major data storage
part of the memory requirement for the \Memory Conservative Implemen-
tation" of doing the jitter calculation was 1000� 24 � 4 bytes which is less
than 1 megabyte. The memory savings here were almost 97.9%.

28

The large problem has n = 1; 200; 001 and l = 27. Repeating the pre-
vious calculation with these numbers, it is seen that the major data storage
part of the memory requirement for the \Fast Implementation" of doing the
jitter calculation is over 256 megabytes. When it was run with the \Memory
Conservative Implementation", 9 blocks of structures were allocated, so the
major data storage part of the memory requirement for jitter analysis in this
run was barely over 2 megabytes. In this case, the memory savings were over
99.2%.

It should be noted that the memory usage for the \Fast Implemen-
tation" is completely determined by the length and number of time signals
being analyzed, but that the memory usage for the \Memory Conservative
Implementation" also depends on the signal shape and the lengths of the jit-
ter windows. An extremely noisy signal would tend to require less memory
while a signal with long monotone stretchs would require more. So, while
the numbers given here for the \Memory Conservative Implementation" are
indicative of the savings, results will vary somewhat from case to case.

Conclusions

A fast algorithm for calculating jitter in a time signal has been pre-
sented. When applied to large problems typical of those found in spacecraft
design analysis, it computes the NASA metric of jitter faster than prior tech-
nology by 3 to 4 orders of magnitude. In the case of very large problems, this
is enabling technology. In any case, it tames the jitter analysis calculation
so that instead of being the overwhelmingly dominant element in the total
calculation time of a typical analysis, it is a relatively small part.

Two implementations of the algorithm have been described. The
faster one takes advantage of knowledge of the entire time series when this
information is available. The memory conservative version allows the calcu-
lation to proceed with much less memory usage, preventing excessive page
swapping and even disk swap space over
ow for particularly large problems.
If jitter must be calculated with respect to several windows, it is much more
eÆcient to calculate the jitter for all the windows simultaneously than it is
to do the calculation for each window independently of the others.

29

References

[1] Daniel P. Giesy. EÆcient calculation of a jitter/stability metric. AIAA
Journal of Spacecraft and Rockets, 34(4):549{557, July{August 1997.

[2] Bolek, J. T. private communication, Feb. 1997.

[3] Maghami, P. G. private communication, Mar. 1997.

[4] Neste, S. L. UARS pointing error budget, (CDRL 220.04). Program
Information Release U 1K21 UARS 517, GE Space Division, July 1986.

[5] Ford, T. EOS pointing error budget, prediction and veri�cation concept.
Technical Report EOS-DN-SE&I-043 Rev. A, Martin Marietta Astro
Space, August 27 1993.

[6] Ram, M. and Throckmorton, A. EOS instrument jitter assessment and
mitigation AIAA 93-1004. In Aerospace Design Conference, Irvine, CA.
AIAA/AHS/ASEE, Feb 1993.

[7] Belvin, W. K., Maghami, P. G., Tanner, C., Kenny, S. P., and Cooley,
V. Evaluation of CSI enhancements for jitter reduction on the EOS
AM-1 observatory. In L. Meirovitch, editor, Dynamics and Control of

Large Structures, Proceedings of the Ninth VPI&SU Symposium, pages
255{266, Blacksburg, VA, May 1993. Virginia Polytechnic Institute and
State University.

[8] Ropbeck, L. S., Rathbun, D. B., and Lehman, D. H. Precision pointing
copntrol for an orbinal earth observing system. IEEE Control Systems

Magazine, 11(3):46{52, 1991.

[9] Maghami, P. G., Kenny, S. P., and Giesy, D. P. PLATSIM: A simula-
tion and analysis package for large-order
exible systems. TM, NASA
Langley Research Center, Hampton, VA 23681, 1996. To appear as a
NASA Langely Research Center Technical Memorandum.

[10] Maghami, P. G., Kenny, S. P., and Giesy, D. P. PLATSIM: An eÆcient
linear simulation and analysis package for large-order
exible systems.
TP 3519, NASA Langley Research Center, Hampton, VA 23681, August
1995.

30

[11] Maghami, P. G., Kenny, S. P., and Giesy, D. P. The PLATSIM software
package: A simulation and analysis tool for large-order
exible systems
with applications to EOS AM-1. In Robert D. Culp and James D. Med-
bery, editors, Guidance and Control 1995, volume 88 of Advances in

the Astronautical Sciences, pages 39{57, San Diego, CA, 1995. Ameri-
can Astonautical Society, Univelt, Inc. Proceedings of the annual AAS
Guidance and Control Conference held February 1-5, 1995, Keystone,
CO.

31

